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Abstract
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use of this property among the interested parties (agents). The agents
negotiate with him the allocation of licenses and the payments of the
licensees to the IPRO. We state �ve axioms and characterize the bar-
gaining solutions which satisfy these axioms. In a solution every agent
obtains a weighted average of his individually rational level and his mar-
ginal contribution to the set of all players, where the weights are the
same across all agents and all bargaining problems. The IPRO obtains
the remaining surplus. The symmetric solution is the nucleolus of a
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1 Introduction

Licensing is a common practice of disseminating an intellectual property among

interested parties which allows an intellectual property rights owner (there-

after, IPRO) to receive revenue in the form of monetary transfers from the

licensees. Since a license fee need not be uniform, i.e., the terms may be negoti-

ated individually, a natural question arises: Who should obtain the license and

how to charge each licensee? The value of a license for each interested party

depends on who else obtains the license, thus the problem presents signi�cant

complexities.1

The paper deals with an owner of intellectual property rights (IPRO) and

potential users of this property. A speci�c context is an innovator of a new

technology which is superior to that used by �rms in an oligopolistic industry.

The IPRO can be either an incumbent �rm or an independent research lab.

He can sell licenses for the use of his new technology to any subset of �rms.

Every allocation of licenses determines the payo¤s of the IPRO and the �rms in

the industry. We provide a normative (axiomatic) approach to the bargaining

between the IPRO and the �rms in the industry about the allocation of licenses

and monetary transfers of the �rms in return.

A bargaining solution is a mapping which associates with every bargaining

problem a vector of net payo¤s to all players. Indirectly, a solution determines

the allocation of licenses and their transfers to the IPRO. We study solutions

which satisfy certain requirements (axioms). Our �rst axiom asserts that a

solution should be undominated. Namely, for every subset of �rms, there is no

other outcome that makes the IPRO and every member of this subset strictly

better o¤. The second axiom requires that if two bargaining problems have the

same sets of undominated outcomes, then they must have the same solution.

1For instance, a Vickrey auction need not be e¢ cient because of presence of the exter-

nalities in bidders�values.
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This axiom is similar in spirit to the well known axiom of independence of

irrelevant alternatives (Nash, 1950). It asserts that the dominated outcomes

are �irrelevant� and thus should not a¤ect the solution.2 The third axiom

states that a solution should not depend on the unit of measurement. The

fourth axiom requires that a solution should not depend on the names of the

agents. The last axiom deals with bargaining problems that are composed of

two independent industries with two di¤erent sets of �rms. The axiom requires

that in this case the net payo¤ of a �rm should depend only on its industry.

We show that in every solution which satis�es the above �ve axioms the

IPRO allocates licenses e¢ ciently (that is, the license allocation maximizes

the total industry pro�t) and every �rm�s net payo¤ is a weighted average of

its individually rational level, the amount that it can guarantee irrespective

of a licence allocation, and its marginal contribution to the grand coalition.

The IPRO obtains the remaining surplus. Furthermore, these weights are

the same across all �rms and across all bargaining problems with any �nite

number of �rms. The weights therefore serve as a measure of the bargaining

power of the IPRO. They are completely determined by the simple one-�rm

problem, where the �rm receives zero without the license and one with it, and

the IPRO, who is an outside lab, can obtain by himself only zero. This can be

regarded as a symmetric problem: The IPRO and the �rm can each achieve

zero by themselves and could obtain one together. If the solution of this speci�c

problem is that the IPRO and the �rm obtain � and 1��, respectively, then the
solution of every bargaining problem with any number of �rms awards every

�rm the average of its individually rational level and its marginal contribution

to the grand coalition with the same weights (�; 1 � �). A special case, the
symmetric solution with � = 1=2, coincides with the nucleolus (Schmeidler,

2A conceptual di¤erence between our axiom and the standard IIA axiom is that in the

latter the notion of �irrelevant outcome�depends on a given solution (see the discussion in

the text, Section 5).
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1969) of a naturally related coalitional game.

Though we focus on patent licensing, this paper can be applied to more

general bargaining problems, where one �powerful�player (a monopolist or a

bureaucrat) has the power to dictate any outcome in a given set of feasible

outcomes. One example is an n-player bargaining over a split of a cake where

an additional player, an arbitrator, has the exclusive power to dictate any

allocation. Another example deals with an information holder who exclusively

owns a piece of information relevant to the players in a strategic con�ict. He

has many ways to transmit part of his information (or all of it) to some (or all)

players (see, e.g., Kamien, Tauman, and Zamir, 1990). The information holder

may bargain with the players about the information to be transmitted to each

agent and about their monetary transfers. Another application concerns a

group of lobbyists (with, potentially, con�icting interests) o¤ering rewards to

a policy maker if their desired policy is implemented.

Our framework resembles that of Buch and Tauman (1992) who deal with

similar bargaining problems. Their work, however, is con�ned to the special

case where the powerful player has no stake in the bargaining, and his only

source of income is the agents�transfers. These problems do not apply, for

instance, to patent licensing problems where the patent holder is an incumbent

�rm. Our axiomatic approach is di¤erent from that of Buch and Tauman, and

we argue that our solution is more appealing.

Throughout the paper we assume that the set of outcomes is commonly

known. Bernheim and Whinston (1986) (thereafter, BW) consider a simi-

lar framework with asymmetric information, where the powerful player (the

auctioneer, in BW) has no information about the agents�preferences.3 The

bargaining problem is resolved by an auction. Every agent submits a contin-

gent schedule which speci�es the transfer of the agent to the auctioneer as a

3Even though the agents themselves are fully informed. BW note that relaxation of this

assumption leads to signi�cant complexities.
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function of the dictated outcome. The schedules are selected simultaneously

and they are assumed to be commitments. After observing these schedules, the

auctioneer dictates an outcome and collects the corresponding transfers. The

BW paper focuses on truthful4 Nash equilibrium points. It can be shown that

in every (submodular) bargaining problem the unique truthful Nash equilib-

rium outcome coincides with our extreme solution, where the bargaining power

of the powerful player is minimal.

As for the application to patent licensing, a plethora of works approach

this problem noncooperatively, employing as pricing mechanisms upfront fees,

royalties, auctions, and their combinations (see Kamien, 1992, for a compre-

hensive survey of early literature; see also Sen and Tauman, 2007, and the

references within). Tauman and Watanabe (2007), perhaps, is the only ex-

ception which uses instead a normative approach, where the licensing process

is considered as a bargaining problem between the IPRO and the �rms, with

semi-transferrable utilities (only transfers from the �rms to the IPRO are al-

lowed). Tauman and Watanabe consider the Shapley value as a bargaining

solution and show that asymptotically it coincides with the non-cooperative

results.

2 Notations and De�nitions

Our model deals with an in�nite set of potential agents and an intellectual

property rights owner (IPRO). We denote by Z = f1; 2; : : :g the set of agents
and by 0 the IPRO. A bargaining problem is a pair (N0; X), where N0 =

N [ f0g, N is a �nite subset of Z, and X is a nonempty compact subset of

4A truthful strategy of an agent in BW is a contingent plan which is characterized by

a real number y. The transfer to the monopolist is the di¤erence between the gross payo¤

of the agent and y, as long as this di¤erence is positive; otherwise, the transfer is zero. A

truthful Nash equilibrium is a Nash equilibrium where every agent plays a truthful strategy.
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RN0

+ (�nite or in�nite) of all possible bargaining outcomes. Every outcome x

in X is a gross payo¤ vector for the players in N0. The IPRO (and only the

IPRO) has the ability to dictate any outcome in X. The agents in N bargain

with the IPRO about the outcome to be dictated and, as a result, transfer

to the IPRO some parts of their gross payo¤s. Thus, the bargaining is on

both: the outcome in X and the transfers of the agents. It is assumed that

only agreements with the IPRO are enforceable. Agents may or may not be

allowed to transfer payo¤s from one to another. If such transfers are allowed,

then the projection of X on N is a simplex.

Let (N0; X) be an (n+1)-player bargaining problem, that is, jN0j = n+1.
For simplicity, we will always assume that N0 = f0; 1; : : : ; ng. Denote by Xn+1
the class of all (n+ 1)-player bargaining problems, and let X =

S1
k=1Xk.

For (N0; X) 2 X , suppose that an outcome x 2 X, x = (x0; x1; : : : ; xn);

is dictated. Then every agent i 2 N obtains the gross payo¤ xi and pays zi,

0 � zi � xi, to the IPRO, thus receiving the net payo¤ yi = xi � zi. The
IPRO receives the net payo¤ y0 = x0 +

P
i2N zi. Let y = (y0; y1; : : : ; yn).

It is important to note that the IPRO must select an outcome in X no

matter whether he reaches an agreement with the agents or not. If the IPRO

has an option to do nothing, then the �inaction�outcome must be in X.

For any subset S � N let S0 = S [ f0g. An outcome x� 2 X is said to be

e¢ cient for S0 � N0 if X
i2S0

x�i = max
x2X

X
i2S0

xi:

It is called e¢ cient if it is e¢ cient for N0. For every S0 � N0 denote

ES0(X) = fx 2 X j x is e¢ cient for S0g

and let E(X) = EN0(X).

For a bargaining problem (N0; X), the individually rational level di(X) of

an agent i 2 N is the gross payo¤ that i can guarantee to obtain. Formally,
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the individually rational level of the IPRO is

d0(X) = maxfx0 : x 2 Xg;

The individually rational level of every agent i is the gross payo¤ guaranteed

to the agent irrespective of the dictated outcome5

di(X) = minfxi : x 2 Xg; i 2 N:

De�nition Let (N0; X) 2 X . A net payo¤ vector y = (y0; y1; : : : ; yn) is

feasible for S0 � N0 at x 2 X if

(i) yi � di(X) for every i 2 S0,

(ii) yi � xi for every i 2 S and yj = xj for every j 2 NnS,

(iii)
P
i2S0

yi =
P
i2S0

xi.

A net payo¤vector y is feasible for S0 if it is feasible for S0 at some x 2 X.
A net payo¤ vector y is feasible if it is feasible for N0.

Condition (i) requires that every player in S0 obtains at least his individ-

ually rational level; (ii) requires that only transfers from the agents in S to

the IPRO are allowed (and agents not in S obtain their gross payo¤s); con-

dition (iii) requires that the total payo¤ of S0 obtained from an outcome x is

distributed entirely among the players in S0, i.e., nothing is transferred to an

outside party or wasted.

Let (N0; X) 2 X and x 2 X. Denote by Y (x) the set of net payo¤ vectors
which are feasible at x and let Y (X) be the set of net payo¤ vectors which are

feasible for X, i.e., Y (X) =
S
x2XY (x).

5Alternative de�nitions of the individual rationality that do not change the resuts of the

paper are discussed in Remark 2 (Section 6) below.
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3 Stability

Let (N0; X) be a bargaining problem in X . Let S � N , S0 = S [ f0g, and
y; y0 2 Y (X). We say that y0 dominates y via S0 if y0 is feasible for S0 and
y0i > yi for all i 2 S0.

De�nition A payo¤ vector y 2 Y (X) is stable if it is undominated, that is,
if for every S0 � N0 there is no y0 2 Y (X) which dominates y via S0.

In other words, a payo¤ vector y is stable if the IPRO cannot �nd a subset

S of agents and a feasible payo¤ vector y0 for S0 so that he and everyone in S

are strictly better o¤.

Proposition 1 Let (N0; X) 2 X . A payo¤ vector y 2 Y (X) is stable if and
only if for every S0 � N0X

i2S0
yi � max

x2X

X
i2S0

xi:

Proof. Let y 2 Y (X) be non-stable, that is, there is S � N and y0 feasible

for S0 such that yi < y0i for all i 2 S0. Hence, there is x 2 X such thatX
i2S0

yi <
X

i2S0
y0i =

X
i2S0

xi:

Conversely, let y 2 Y (X) be stable. Suppose to the contrary thatX
i2S0

yi <
X

i2S0
x̂i

for some S0 � N0 and some x̂ 2 ES0(X). Let T = fj 2 S0 j yj < x̂jg. Clearly,
T 6= ? and 0 62 T (if y0 < x̂0, then y is dominated via f0g by y0 2 argmax

x2X
x0).

De�ne w 2 RN0

+ by

wj =

8>><>>:
yj + "; j 2 T;
x̂j; j 2 NnT;
x̂0 +

P
j2T (x̂j � yj � "); j = 0;
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where " > 0 is small enough, such that wj = yj + " < x̂j for all j 2 T and

y0 +
X

j2T
(yj + ") < x̂0 +

X
j2T

x̂j (1)

Since dj(X) � yj < wj < x̂j for all j 2 T and
P

j2T 0 wj =
P

j2T 0 x̂j, w is

feasible for T 0 at x̂. But wj > yj for all j 2 T , and by (1)

w0 = x̂0 +
X

j2T
(x̂j � yj � ") > y0:

Hence, y is dominated by w via T 0, a contradiction.

Denote by ST (X) the set of stable net payo¤ vectors in a bargaining prob-

lem (N0; X).

A payo¤ vector y 2 Y (X) is e¢ cient if it is feasible at some e¢ cient

outcome in X, i.e., if there is x� 2 E(X) such that y 2 Y (x�).

Corollary 1 If y 2 Y (X) is stable, then it is e¢ cient.

4 Related Games in Coalitional Form

A game (N0; V ) in coalitional form consists of the set N0 of players and a

function V : 2N
0 ! R such that V (?) = 0. Every S � N0 is called a coalition

and N0 is called the grand coalition.

Let (N0; X) be a bargaining problem in X . We associate with (N0; X) the

game in coalitional form (N0; VX), for which the worth of every coalition S is

the highest total payo¤ that it can guarantee to its members,

VX(S) =

8><>:
max
x2X

P
i2S
xi; S 3 0;P

i2S
di(X); S 63 0:

(2)

The core of (N0; VX) is denoted by CVX and is de�ned to be the set of all
y 2 RN0

such that
P

i2S yi � VX(S) for all S � N0 and
P

i2N0 yi = V (N
0).
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The following proposition shows that for every bargaining problem (N0; X)

in X , the set of stable net payo¤ vectors ST (X) coincides with the core of
(N0; VX).

Proposition 2 For every (N0; X) 2 X , ST (X) = CVX .

The proof appears in the Appendix.

With slight abuse of notations, we shall often refer to the set ST (X) as

simply the core of bargaining problem (N0; X).

For every i 2 N and every S0 3 i, denote by MCi(S0; X) the marginal
contribution of i to the coalition S0,

MCi(S
0; X) = VX(S

0)� VX(S0nfig):

A bargaining problem is called submodular if the marginal contribution of

every agent to a coalition decreases with the coalition size (with respect to

inclusion). Formally:

De�nition A bargaining problem (N0; X) 2 X is submodular if for all i 2 N
and all S � T 3 i

MCi(S
0; X) �MCi(T 0; X): (3)

Denote by X SM the class of submodular bargaining problems. Submod-

ularity is the standard diminishing returns assumption. This class includes

the problems with �cut-throat�competition, where the outcomes which ben-

e�t only one of the agents (and yield zero to the rest) are e¢ cient. It is, for

instance, n-player bargaining over a split of a cake where the (n+1)-st player,

the IPRO, has the exclusive power to dictate allocation. Another example of

a submodular bargaining problem is an interaction of a patent holder of a new

technology and the �rms in an oligopolistic industry. The patent holder can

sell licenses to use his technology to any number of �rms via up-front fees,
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royalties, or combinations of the two. An additional licensee �rm increases the

total industry pro�t, but in a decreasing rate. The larger is the number of

licenses sold, the smaller is the marginal value of an additional license.

The following proposition asserts that every submodular bargaining prob-

lem has a nonempty core.

Proposition 3 For every (N0; X) 2 X SM , ST (X) is nonempty.

We make use of the following lemma.

Lemma 1 Let (N0; X) 2 X SM . Then y 2 ST (X) if and only if

(i) di(X) � yi �MCi(N0; X) for all i 2 N ,

(ii) y0 = VX(N0)�
P

i2N yi.

Proof. Suppose that y 2 ST (X). Then (i) and (ii) are immediate by

Proposition 2. Conversely, suppose that y satis�es (i) and (ii). By Proposition

2, to prove that y 2 ST (X) it su¢ ces to show that for every S � N
P

i2S0 yi �
VX(S

0). By (i) and (ii),

y0 +
X
i2S
yi = VX(N

0)�
X
j2NnS

yj � VX(N0)�
X
j2NnS

MCj(N
0; X);

and since X 2 X SM we haveX
j2NnS

MCj(N
0; X) � MCj1(N

0; X) +MCj2(N
0nfj1g; X)

+ : : :+MCjn�s(N
0nfj1; : : : ; jn�s�1g; X)

= VX(N
0)� VX(S0);

where fj1; j2; : : : ; jn�sg = NnS.
Proof of Proposition 3. Consider point y 2 RN0

de�ned as follows:

yj =

8<: dj(X); j 2 N;
VX(N

0)�
P
i2N

di(X); j = 0:

By Lemma 1, y is in ST (X).
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5 An Axiomatic Approach

In this section we de�ne a solution on X SM and present �ve axioms for a

solution to satisfy.

De�nition A solution on X SM is a mapping, �, which associates with every

bargaining problem (N0; X) in X SM a payo¤ vector �(X) in Y (X).

We impose the following �ve axioms on �. The �rst axiom requires that a

solution of every problem is stable.

Axiom 1 (Stability) For every (N0; X) 2 X SM , �(X) 2 ST (X).

This assumes that the IPRO will reject a payo¤ vector y if he can reach

another settlement y0 with some subset of agents S � N such that every

member of S0 is strictly better o¤with y0 than with y. Note that by Corollary

1, if � satis�es Axiom 1, then �(X) is an e¢ cient payo¤ vector.

The second axiom asserts that only stable net payo¤ vectors are relevant

for the solution. That is, any net payo¤ vector which is not stable is not

considered to be a credible settlement for the IPRO, thus it should not a¤ect

the solution.

Axiom 2 (Stability Dependence (STD)) For every (N0; X) and (N0; X 0)

in X SM , if ST (X) = ST (X 0), then �(X) = �(X 0).

This axiom resembles the principle of independence of irrelevant alterna-

tives (IIA). Any non-stable net payo¤ vector is �irrelevant�, since the IPRO

who has the power to dictate any outcome will reject those that can be im-

proved upon. Thus the solution should not depend on �irrelevant�net payo¤

vectors. Note, however, that this axiom is not exactly analogous to Nash

(1950)�s IIA. In the Nash bargaining problem, �irrelevance�of outcomes de-

pends on both the speci�c problem and the given solution. Every outcome
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which is not the solution outcome is irrelevant in the sense that it could be

deleted from the set of outcomes without a¤ecting the solution.6 In contrast,

in our context an irrelevant outcome is determined only by the bargaining

problem and not by the solution. Given a problem, the irrelevant outcomes

are exactly those which are not stable, hence deleting or adding a non-stable

outcome does not a¤ect the solution.

Next, we require that a solution does not depend on the unit of measure-

ment.

Axiom 3 (Scale Covariance) For every (N0; X) 2 X SM , every b 2 RN0

and every scalar c > 0, if (N0; cX + b) 2 X SM , then

�(cX + b) = c�(X) + b:

The next axiom requires that a solution does not depend on the names of

the agents. Let (N0; X) 2 X SM and let � be a permutation of N = f1; : : : ; ng.
For every x 2 Rn, let �x 2 Rn be such that (�x)i = x�(i) for all i 2 N and let

�X = f�x j x 2 Xg.

Axiom 4 (Anonymity) Suppose that (N0; X) 2 X SM . For every permuta-

tion � of N , if (N0; �X) 2 X SM , then

�i(X) = ��(i)(�X); i 2 N .

Finally, we require that in a solution the agents�payo¤s are not a¤ected if

an independent (payo¤-orthogonal) agent is added to the bargaining problem.

Axiom 5 (Separability) Let (N0; X) 2 X SM , where N0 = f0; 1; : : : ; ng.
Denote N 0 = N0[fn+1g and X 0 = X� [a; b], 0 � a � b, If (N 0; X 0) 2 X SM ,

then �i(X
0) = �i(X) for all 1 � i � n.

It can be veri�ed that Axioms 1 �5 are independent.

6However, adding an outcome may a¤ect the solution.
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6 The Solution

We next characterize the solution onX SM which satis�es the above �ve axioms.

Theorem 1 A solution � on X SM satis�es Axioms 1 �5 if and only if there

exists �, 0 � � � 1, such that for all (N0; X) in X SM

�i(X) = �
�
i (X) = �di(X) + (1� �)MCi(N0; X) for all i 2 N; (4)

�0(X) = �
�
0 (X) = max

x2X

X
i2N0

xi �
X

i2N
�i(X): (5)

The proof appears in the Appendix.

The solution of every bargaining problem in X SM awards every agent in N

a weighted average of her individually rational level and her marginal contri-

bution to the grand coalition. The IPRO extracts the remaining surplus. The

weights, (�; 1 � �), are the same across all agents and across all bargaining
problems in X SM . Thus, it is su¢ cient to determine � for one bargaining

problem. The same � then applies to all bargaining problems in X SM , with

any number of agents. The parameter � measures the bargaining power of the

IPRO: The greater is �, the greater is the payo¤ of the IPRO.

Example. Consider the following one-agent bargaining problem X̂2 = f(0; x) 2
R2+ j 0 � x � 1g. The IPRO and the agent, each can guarantee 0 on his own,
and together they can achieve 1. By Theorem 1,

��0 (X̂2) = �;

��1 (X̂2) = 1� �:

The theorem asserts that the bargaining power of the IPRO is completely

determined by this simple bargaining problem. If the solution for this prob-

lem is � = 1, then the IPRO obtains the entire surplus of every bargaining

problem, leaving the agents only with their individually rational levels. On

the other hand, if the solution of this problem is � = 0, every agent in every

14



bargaining problem (N0; X) in X SM obtains his marginal contribution to the

grand coalition, while the IPRO collects the smallest payo¤ in ST (X). In X̂2

the IPRO and the agent may be regarded as symmetric players. Therefore,

� = 1=2 could be regarded as a proper division of the surplus. In this case, by

Theorem 1, � = 1=2 for all problems in X SM . The proposition below shows

that, for all X 2 X SM , �1=2(X) is actually the nucleolus of VX .

Let (N0; V ) be a game in coalitional form. Denote by IV the set of impu-

tations of V ,

IV =

(
x 2 RN0

�����
P

i2N0 xi = V (N
0),

xi � V (i), all i 2 N0:

)
:

The nucleolus of V is de�ned as follows (Schmeidler, 1969). For every

nonempty set S  N0 and every y 2 IV denote the excess of coalition S by

eV (S; y) = V (S)�
X

j2S
yj: (6)

Given y 2 IV de�ne the excess vector �(y) 2 R2
N0�2 whose components are

the excesses eV (S; y), S 6= N0 and S 6= ?, arranged in a decreasing order. The
nucleolus of the game is the set of payo¤ vectors NV � IV which lexicographi-
cally minimizes �(y) over IV . The nucleolus is a singleton and it is in the core

of V if the core is nonempty (Schmeidler, 1969).

Proposition 4 The solution �1=2 on X SM is the nucleolus of VX for every

(N0; X) in X SM .

The proof appears in the Appendix.

Remark 1 Theorem 1 and the other results which apply to X SM also apply

to a wider class X � consisting of all bargaining problems (N0; X) where the

marginal contribution of every agent i 2 N to a coalition S0 3 i is the smallest
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for the grand coalition. Formally, X � is the set of all bargaining problems

(N0; X) such that for all S � N and all i 2 S

MCi(N
0; X) �MCi(S0; X):

An example of a bargaining problem which is in X � but not necessarily sub-

modular is one which involves a limited capacity technology. A small coalition

of players can increase its output by adding a player (perhaps, with an in-

creasing rate due to economy of scale) more than a large coalition which has

already reached the capacity limit.

Remark 2 A possible alternative de�nition of the individual rationality

is as follows. Suppose that if an agent i unilaterally leaves the bargaining

table, the IPRO dictates an outcome x = (x0; x1; : : : ; xn) which is e¢ cient

for the players in N0nfig, i.e., x 2 EN0nfig(X). In this case, agent i receives

xi. Since EN0nfig(X) can contain more than one point, i can guarantee only

the minimum level of the i-th component in EN0nfig(X). We therefore de�ne

di(X) = minfxi : x 2 EN0nfig(X)g.
A more conservative de�nition takes into account the possibility that i may

not be the only one to leave the �bargaining table�. In this case, she can only

justify a claim of her smallest payo¤ xi among all outcomes x 2 X which are

e¢ cient for S0, where S varies over all subsets of Nnfig, i.e., di(X) = minfxi :
x 2 ES0(X); S � Nnfigg.
Theorem 1 and the other results presented above hold with either of these

two alternative de�nitions of the individual rationality.

Remark 3 We would like to comment on the relationship between our result

and that of Buch and Tauman (1992) (thereafter, BT). Let X 0 � X be the

class of bargaining problems with three or more players, where the IPRO can

achieve only zero by himself. Formally, (N0; X) 2 X 0 if jN0j � 3 and x0 = 0
for all x 2 X. BT provide an axiomatic approach only to problems in X 0 and
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�nd a unique solution, �BT . The BT axiomatic approach is di¤erent. It omits

the stability and STD axioms and instead imposes the axiom of independence

of irrelevant alternatives. For every (N0; X) 2 X 0, BT de�ne the individually

rational level of every agent i 2 N as

di(X) = minfxi : x 2 EN0nfig(X)g: (7)

The unique solution of BT is

�BTi (X) = di(X) for all i 2 N ,

�BT0 (X) = VX(N
0)�

X
i2N

di(X);

Namely, each agent receives only his individually rational level, and the IPRO

(the ruler, in BT) obtains the surplus. Note that the solution �BT coincides

with our solution7 �� for � = 1 on X SM \ X 0.

7 Two Examples

7.1 A Monopoly Industry with an Entry Barrier

Consider a monopoly industry with a technological entry barrier. Namely,

there is a monopolist (player 1) and n�1 potential entrants (players 2; 3; : : : ; n),
n � 3. Suppose that the monopolist possesses the exclusive right for some pro-
duction technology; the potential entrants have access to an inferior technology

which does not enable them to compete with the monopolist.

Let player 0, the IPRO, be an outside innovator who possesses a new

technology which is as e¢ cient as the monopolist�s technology. The IPRO

licenses his technology to a subset of �rms of his choice. A licensee �rm has

the same cost function as the monopolist.

7Provided d(�) is given by (7) (see also Remark 2 above).
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Let N = f1; 2; : : : ; ng, let K � Nnf1g be the set of licensee �rms, and
denote k = jKj. Let qi be the quantity produced by �rm i and letQ =

P
i2N qi.

The cost function of every licensee i in K is the same as the cost function of

the incumbent monopolist and is given by C(qi) = cqi. The only producers are

the �rms in K [ f1g. The inverse demand function for the product is linear,
P (Q) = maxf0; a�Qg, where a > c > 0.
We next describe the bargaining problem (N0; X) and compute its solution

��(X), 0 � � � 1. The set of players is N0 = N [ f0g. The set of outcomes
X � Rn+1 consists of (n+ 1)-tuples of the form x(k) = (x0(k); : : : ; xn(k)), for

any k, 0 � k � n� 1, where xi(k) is the Cournot pro�t of �rm i, i 2 K [ f1g,
and xj(k) = 0 for every non-licensee j, j 6= 1. It is straightforward to show

that for every i 2 K [ f1g,

xi(k) =

�
a� c
k + 2

�2
:

Every �rm in a coalition S0 containing the IPRO has access to the new

technology and may become a licensee. Suppose that S0 contains the incum-

bent monopolist, i.e., 1 2 S0. Then the maximum pro�t that S0 can obtain is
the monopoly pro�t, VX(S0) = (a�c)2=4, which is achieved for k = 0, namely,
by giving no licenses.

Next, suppose that 1 62 S0. Then the maximum total payo¤ of S0 is given

by

VX(S
0) = max

1�k�jSj
k �
�
a� c
k + 2

�2
:

If jSj � 2, this is maximized for k = 2, and thus

VX(S
0) = (a� c)2=8:

We can now compute the marginal contribution MCi(N0; X) of every player

i 2 N . For the incumbent monopolist, we have

MC1(N
0; X) = VX(N

0)� VX(N0nf1g)

= (a� c)2=4� (a� c)2=8 = (a� c)2=8:
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For every other �rm i = 2; : : : ; n, we haveMCi(N0; X) = VX(N
0)�VX(N0nfig) =

0, since both N0 and N0nfig contain the incumbent monopolist.
The individually rational level di(X) of �rm i 2 N is the pro�t that i can

guarantee no matter who has access to the new technology. For every potential

entrant i = 2; : : : ; n, being a non-licensee and receiving zero pro�t is the worst

case, thus di(X) = 0. For the incumbent monopolist, the worst case is when

all �rms use the new technology, i.e.,

d1(X) =

�
a� c
n+ 1

�2
:

Since for all 0 � � � 1, the solution �� is e¢ cient, the IPRO dictates the
outcome which maximizes the industry pro�t. Thus the incumbent monopolist

will remain the only producer, and the innovation is �shelved�. The net payo¤s

are given by

��1 (X) = �

�
a� c
n+ 1

�2
+ (1� �)(a� c)

2

8
;

��i (X) = 0; i = 2; : : : ; n; and

��0 (X) = VX(N
0)�

Xn

i=1
��i (X)

= (1 + �)
(a� c)2
8

� �
�
a� c
n+ 1

�2
:

Notice that when the bargaining power of the IPRO is minimal, � = 0, the

IPRO obtains a half of the monopoly pro�t; with the maximal bargaining

power, � = 1, he obtains

�10(X) =
(a� c)2
4

� (a� c)2
(n+ 1)2

;

which is at least 3/4 of the monopoly pro�t (for n = 3), approaching the

entire monopoly pro�t as n!1. Thus, in every solution ��, the incumbent
monopolist pays to the IPRO at least 1/2 of his pro�t to ensure �shelving�of

the new technology.
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7.2 An Oligopoly Industry with Identical Firms

Consider a Cournot oligopoly industry with n + 1 identical �rms, N0 =

f0; 1; : : : ; ng, producing a single good with a constant return to scale tech-
nology. Let c be the (�xed) marginal cost of production. The inverse demand

function for the product is linear, P (Q) = maxf0; a � Qg, where a > c > 0.
Player 0 is an incumbent innovator who, besides producing with his superior

technology, may also license it to any subset of �rms. The new technology

reduces the marginal cost of every licensee from c to c � ", " > 0. The set of
outcomes X � Rn+1 consists of the vectors x(k), where xi(k) is the Cournot
pro�t of �rm i, i 2 N0, and k is the number of licensees (including the incum-

bent innovator), 1 � k � n+ 1.
Let k� be the number of licensees maximizing the industry pro�t, and

suppose that n � 2(a�c
"
� 1). It can be veri�ed that8 k� = a�c

"
(see, e.g.,

Kamien and Tauman, 2002). This is the minimal number of licensees that

drives the market price to c, the pre-innovation marginal cost. Hence, every

non-licensee �rm exits the market. Every producing �rm obtains a per-unit

pro�t " and produces " units (the total demand is a� c, and (a� c)=k� = "),
thus receiving the pro�t of "2. The total industry pro�t is (a� c)".
Let us now compute the solution �a(X), 0 � � � 1. The marginal contri-

bution of every �rm, except for the innovator, is zero. The reason is that for

every i 2 N , N0nfig includes more than k� �rms, and when k� of them have

access to the new technology, the �rms in N0nfig receive the total pro�t of
(a� c)", while �rm i is forced to exit. Hence, for all i 2 N , MCi(X) = 0 and,
clearly, di(X) = 0. Therefore, for every � 2 [0; 1],

��i (X) = �di(X) + (1� �)MCi(X) = 0; i 2 N;

��0 (X) = (a� c)":

8For simplicity we assume that a�c" is an integer.
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It turns out that this result coincides with the non-cooperative result of

Kamien and Tauman (2002), where the innovator sells licenses by an auction.

The innovator chooses a number k and auctions o¤ k licenses. The k highest

bidders win and use the new technology. The innovator collects their bids. If

n � 2(a�c
"
� 1), it is optimal to auction o¤ a�c

"
licenses, and the innovator

again extracts (a� c)".
Our result is also consistent with Tauman and Watanabe (2007), who ob-

tained the same equivalence result for the Shapley value, this time in the limit

when n increases inde�nitely.

8 Conclusion

In this paper we provide solutions to bargaining problems involving an IPRO

and a set of players. We impose �ve axioms and characterize the solutions

on the class of all submodular bargaining problems. Any solution assigns

every agent an average of her individually rational level and her marginal

contribution to all other players. The weights de�ning this average are the

same across all agents and across all submodular problems. Thus, they can

be used to measure the bargaining power of the IPRO. The higher is the

weight assigned to the individually rational level of an agent, the higher is the

bargaining power of the IPRO. When he has the full bargaining power, every

agent obtains her individually rational level only, and the IPRO, who dictates

an e¢ cient outcome, obtains the rest of the �cake�. If the IPRO has the

weakest bargaining power, every agent obtains her marginal contribution. If

the IPRO and every agent have equal bargaining power, the solution coincides

with the nucleolus of a naturally related coalitional game.

A possible direction which we �nd interesting to explore is bargaining with

several IPRO-like entities (bureaucrats). The bureaucrats can dictate any

outcome (for instance, by unanimity or by majority vote). Even the case
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of a single agent and multiple bureaucrats seems to be nontrivial. Another

interesting direction is to analyze bargaining problems where the IPRO can

dictate a subset of outcomes (not a speci�c outcome) which is an element of a

given partition of the set of all outcomes.

Appendix

Proof of Proposition 2

Let (N0; X) 2 X and let (N0; VX) be the associated game in coalitional form.

By construction of VX we obtain that y 2 CVX if and only if it satis�es
(i)

P
i2N0

yi = max
x2X

P
i2N0

xi,

(ii)
P
i2S0

yi � max
x2X

P
i2S0

xi for all S0 � N0, and

(iii) yi � di(X) for all i 2 N0.

We shall show that y 2 ST (X) if and only if it satis�es (i) �(iii). Note
that (i) is implied by (ii) for every y 2 Y (X) (see Corollary 1). If y 2 ST (X),
then (i) and (ii) are satis�ed by Proposition 1 and (iii) is satis�ed because

y 2 Y (X). Conversely, if y satis�es (i) �(iii) and y 2 Y (X), then y 2 ST (X)
by Proposition 1. The only part which is left to prove is that if y 2 RN0

satis�es (i) �(iii), then y 2 Y (X). Let x� 2 E(X) and xN0ni 2 EN0ni(X). By

(i) and (ii), for all i 2 N ,

yi =
X
j2N0

x�j �
X
j2N0ni

yj �
X
j2N0

x�j �
X
j2N0ni

x
N0ni
j

= x�i +
X
j2N0ni

x�j �
X
j2N0ni

x
N0ni
j � x�i :

By (iii), yi � di(X). Hence, y 2 Y (x�) � Y (X).
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Lemmata

We make use of the following two lemmata. The proofs are straightforward,

and thus omitted. The number of elements of S � N will be denoted by s.

Lemma 2 Let (N0; X) and (N0; X 0) be in X . Suppose that for some b =
(b0; b1; : : : ; bn) 2 RN

0
and c 2 R++, X 0 = cX + b. Then

VX0(S0) = cVX(S
0) +

X
j2S0

bj; S0 � N0; and

di(X
0) = cdi(X) + b; i 2 N0:

Lemma 3 Let (N0; X) 2 X , where N0 = f0; 1; : : : ; ng. Let N 0 = N0[fn+1g
and X 0 = X � [a; a0], where 0 � a � a0. Then

VX0(S0) = VX(S
0); S0 � N0; and

di(X
0) = di(X); i 2 N:

Proof of Theorem 1

Existence. By Lemma 1, � satis�es Stability and STD axioms. To verify

the Scale Covariance axiom, let (N0; X) and (N0; X 0) be in X SM such that for

some b̂ 2 RN0
and ĉ 2 R++, X 0 = ĉX+ b̂. By Lemma 2, for all i 2 N , di(X 0) =

ĉdi(X) + b̂i, MCi(X 0) = ĉMCi(X) + b̂i, and VX0(N0) = ĉVX(N
0) +

P
j2N0 b̂j.

Therefore, for all i 2 N , �i(X 0) = ĉ�i(X) + b̂i, and

�0(X
0) = ĉVX(N

0) +
X

j2N0
b̂j �

X
j2N0

(ĉ�j(X) + b̂j)

= ĉ
�
VX(N

0)�
X

j2N0
�j(X)

�
+ b̂0 = ĉ�0(X) + b̂0:

The Anonymity axiom is trivially satis�ed. Finally, we verify the separability

axiom. Let (N0; X) 2 X SM , where N0 = f0; 1; : : : ; ng. Let N 0 = N0[fn+1g
and X 0 = X � [a; a0], where 0 � a � a0. Clearly, (N 0; X 0) 2 X SM . By
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Lemma 3, for all i 2 N , di(X 0) = di(X), MCi(N0; X 0) = MCi(N
0; X), and

VX0(N0) = VX(N
0), implying that �(X 0) = �(X).

Uniqueness (up to the parameter �). Let � be a solution on X SM

which satis�es Axioms 1 �5. Let

X̂2 = f(0; x) j 0 � x � 1g

and let �0(X̂2) = �. Since ST (X̂2) = fy 2 R2+ j y0 + y1 = 1g, it must be that
�1(X̂2) = 1 � �. We shall show that �(X) is uniquely determined, given �,
for all X 2 X SM .

Consider next the bargaining problem in X SM
2 de�ned by

X(d;b) = fd0g � [d1; b1];

where d = (d0; d1) 2 R2+ and b1 � d1. Clearly, X(d;b) = d+(b1� d1)X̂, and, by
the Scale Covariance axiom,

�(X(d;b)) = d+ (b1 � d1)(�; 1� �);

and �(X(d;b)) is uniquely determined. Next, consider the bargaining problem

(N0; �X(d;b)) 2 X SM , where d = (d0; d1; : : : ; dn) 2 RN
0

+ and b = (b1; : : : ; bn) 2
RN+ such that bi � di for all i 2 N , and

�X(d;b) = fd0g � [d1; b1]� : : :� [dn; bn]:

By the Separability and Anonymity axioms, for every i 2 N ,

�i( �X(d;b)) = �di + (1� �)bi:

This, together with the fact that �( �X(d;b)) is e¢ cient, uniquely determines

�( �X(d;b)). Also observe that

ST ( �X(d;b)) =

(
y 2 RN0

+

����� di � yi � bi for all i 2 N;y0 = d0 +
P

i2N(bi � yi)

)
:
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Let (N0; X) be an arbitrary bargaining problem in X SM . Let d̂i = di(X)

and b̂i = MCi(N
0; X), i 2 N . Also, let d̂0 = VX(N

0) �
P

i2N b̂i. Then, by

Lemma 1,

ST (X) =

(
y 2 RN0

+

����� d̂i � yi � b̂i for all i 2 N;y0 = d̂0 +
P

i2N(b̂i � yi)

)
= ST ( �X(d̂;b̂)):

Since ST (X) = ST ( �X(d̂;b̂)), by the STD axiom, �(X) = �( �X(d̂;b̂)), and �(X) is

uniquely determined for every X 2 X SM . This completes the proof.

Proof of Proposition 4

Let (N0; X) 2 X SM . Then for every S � N and every i 2 NnS, VX(N0) �
VX(N

0ni) � VX(N0nS)� VX(N0n(S [ i)), orX
j2S

VX(N
0)� VX(N0nj) � VX(N0)� VX(N0nS): (8)

For every y 2 Y (X) and every S � N0 de�ne

eX(y; S) = VX(S)�
X
i2S
yi:

First, note that for every S � N , VX(S) =
P

i2S di(X), hence, for all

y 2 Y (X);
eX(y; S) =

X
i2S
eX(y; fig): (9)

Next, for every S � N and every y 2 Y (X), by (8),

eX(y;N
0nS) = VX(N

0nS)�
X

i2N0nS

yi = VX(N
0nS)� VX(N0) +

X
i2S
yi

�
X
i2S

�
VX(N

0ni)� VX(N0) + yi
�

=
X
i2S

0@VX(N0ni)�
X
j2N0ni

yj

1A =
X
i2S
eX(y;N

0ni): (10)
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By (9) and (10), for all y 2 Y (X) and all S � N ,X
i2S
eX(y; fig) � eX(y; S);X

i2S
eX(y;N

0ni) � eX(y;N
0nS):

Therefore, the nucleolus y� of VX is de�ned for every i 2 N by

y�i = argmin
y2ST (X)

�
max

�
eX(y; fig); eX(y;N0ni)

	�
:

Since eX(y; fig) = di(X)� yi and eX(y;N0ni) = VX(N0ni)� VX(N0) + yi, y�i
is the solution of

di(X)� yi = VX(N0ni)� VX(N0) + yi:

Thus,

y�i =
VX(N

0)� VX(N0ni) + di(X)
2

=
MCi(N

0; X) + di(X)

2
; i 2 N:
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