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Abstract: This paper applies a nonparametric 
heteroskedasticity and autocorrelation consistent (HAC) 
estimator of error terms in the context of the spatial 
autoregressive model of GDP per capita convergence of 
European regions at NUTS 2 level. By introducing the 
spatial dimension, it looks at how the equilibrium 
distribution of GDP per capita of EU regions evolves 
both in time and space dimensions. Results demonstrate 
that the global spatial spillovers of growth rates make an 
important contribution to the process of convergence by 
reinforcing the economic growth of neighboring regions. 
Results are even more pronounced when the convergence 
in wage per worker is considered. The choice of kernel 
functions does not significantly affect the estimation of 
the variance-covariance matrix, while the choice of the 
bandwidth parameter is quite important. Finally, results 
are sensitive to the weighting matrix specification, and 
further research is needed to give a more rigorous 
justification for the selection of the weighting matrix. 
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1 Introduction 
 
Traditional models of income convergence across countries (Mankiw et al., 1992) 
or regions within a country (Barro and Sala-i-Martin, 1992) concentrate on the 
time dimension, but they ignore the space dimension of convergence. They look 
at units of analyses isolated from each other in space as if they were remote 
islands. For this assumption to be true, we should not expect systematic 
differences in the growth rates of different regions of the world. However, 
empirical evidence suggests that different parts of the world grow at different 
speeds and growth rates are spatially correlated. Can those differences be 
explained by a more favorable, absolute geographical location that provides an 
advantage to some regions? Are there large positive spillovers that speed up and 
reinforce the growth of geographically close regions? Finally, do spatial links 
between regions change the results of analyses that study the time dynamics of 
convergence? This paper tries to answer these important questions in the context 
of the spatial autoregressive model of income per capita convergence of European 
regions at NUTS 2 level. By introducing the spatial dimension, we can look at 
how the equilibrium distribution of GDP per capita of EU regions evolves in both 
time and space. 
 Recent advances in spatial statistics point to shortcomings in the 
traditional approach of modeling convergence as a purely time dynamic process 
and directly introduce the spatial dimension by modeling spatial interactions in 
explanatory variables and error terms. However, spatial models typically assume a 
very specific error structure that frequently includes a spatial autoregressive error 
parameter and a homoskedastic innovation term. This error structure produces the 
estimation of the variance-covariance matrix, which is not robust when 
innovations are heteroskedastic and spatially correlated in a nontrivial manner, 
and, as a result, the corresponding variance-covariance matrix is not estimated 
correctly. Specifically, the assumption of homoskedastic errors is not a good 
approximation to model spatial correlations across geographical regions that 
differ in size and other important characteristics. In addition, the assumption of no 
spatial correlation in the error term is violated if the estimated model has omitted 
variables that are spatially correlated. To provide a robust estimation of the 
standard errors of the estimated coefficients, this paper applies a nonparametric 
heteroskedasticity and autocorrelation consistent (HAC) estimator of error terms, 
as suggested by Kelejian and Prucha (2007) 
 The rest of the paper is organized as follows. First, I explain why spatial 
links between regions are important. Second, I discuss factors that lead to 
spatially correlated and heteroskedastic errors. Third, I set up a model of regional 
growth that includes a possibility of spatial spillovers across regions. Fourth, I 
explain the estimation technique focusing on the robust estimation of the error 



term. Fifth, I describe the data and present summary statistics. Finally, I present 
results and discuss the direction further research should take. 
 
2 Spatial Dependence 
 
The study of economic development and convergence across countries or regions 
within a country constantly draws the attention of economic researchers. In a 
seminal paper, Mankiw et al. (1992) demonstrated that according to the Solow 
growth model countries located further away from their steady-state equilibrium 
should converge faster than countries that are closer to the steady state. They 
found convergence across countries by showing that relatively poor countries 
grew faster then relatively rich ones over the period 1960–1985. The Solow 
growth model and its predictions were also tested with regional data. For 
example, Barro and Sala-i-Martin (1992) found that the states in the U.S. 
converged during 1840–1988 and estimated the speed of convergence at 2 percent 
per year. However, those studies ignore the possibility of the spatial dependence 
in the cross-country regression and treat each unit of observation as an isolated 
island. 
 The spatial dependence across regions can emerge due to economic 
spillovers that reflect the mobility of goods and factors of production, the spread 
of knowledge and technology, as well as the interdependence of institutions. For 
example, the new economic geography theory explicitly introduces the market 
potential and supplier’s access—factors that are interregional by nature—as two 
of the major reasons for the agglomeration of firms (Head and Mayer, 2004; 
Amiti and Javorcik, 2008) that drive decisions of multinationals to invest in a 
particular region. Durlauf and Quah (1999) discuss the possibility of spatial 
interdependence in the context of the growth model with human capital spillovers 
across countries (initially introduced by Lucas, 1993) and point out that these 
spillovers markedly change the dynamics of convergence and necessitate the 
modeling of cross-country interactions in any empirical analysis. A country’s 
institutional arrangements have a very strong impact on the level of GDP per 
capita, and they are influenced by changes in the institutional quality in 
neighboring countries. Kelejian et al. (2007) demonstrate that the quality of 
governance largely is determined by the quality of governance in neighboring 
countries due to economic and political factors that include political instability, 
armed conflicts, and copycat policies. Ades and Chua (1997) find that regional 
instability (average number of coups and revolutions in neighboring countries) 
has a negative effect on growth. Finally, as noted by DeLong and Summers 
(1991), any important omitted variables that are similar in neighboring countries 
can generate spatially correlated error terms in cross-country growth regressions 
(i.e., contagion effect, regional business cycles, and impact of common currency). 



 The spatial interactions are even more pronounced for regions within a 
country because of lower barriers to trade and migration and similarities of 
neighboring regions within a country in terms of institutional and cultural 
characteristics. An increasing number of studies recognize the importance of 
modeling spatial dependence within the framework of regional development 
models. Abreu et al. (2004) present a review of the literature on growth and 
convergence, focusing on spatial factors, and point out that the number of papers 
on the topic has grown significantly since 1997. To name a few, Rey and 
Montouri (1999) investigated the spatial dependence across the U.S. and found 
evidence of positive spatial autocorrelation for state-level personal income. Garret 
et al. (2005) studied spatial autocorrelation in growth rates across the U.S. and 
found that a one percentage point increase in the average income growth of 
neighboring states generated a 0.23 percentage point increase in a state’s growth 
rate. A number of studies looked at the convergence of European regions and 
found evidence of spatial dependence (Fingleton, 2001; Baumont et al., 2003; Le 
Gallo, 2004; Lopez-Bazo et al., 2004; Arbia et al., 2005). The focus on European 
regions allows us to look at the convergence process of regions with a high 
variability in economic, institutional, and cultural characteristics that were 
recently unified within the European Union. 
 This paper differs from other studies of convergence in several important 
ways. First, the model allows for the possibility of spatial spillovers both in the 
dependent variable and in the error term and offers an estimation procedure that is 
consistent under a wide class of models with spatial dependence. Because some of 
the spatial effects are not observable, it is extremely important to use the 
estimation methodology that is robust to arbitrary spatial correlation in the error 
structure. In general, studies of regional convergence either ignore the spatial 
correlation in the error term or impose a specific error structure (i.e., spatial 
autoregressive process in the error term). I apply a nonparametric 
heteroskedasticity and autocorrelation consistent (HAC) estimator (Kelejian and 
Prucha, 2007) within a framework of the spatial autoregressive model that 
includes global spatial spillovers in the dependent variable. 
 Second, the paper looks at a geographically extended sample of EU-25 
regions at NUTS 2 levels of aggregation for the period 1999–2005. This provides 
more variation in the measure of economic development. Further, it allows us to 
examine whether including newly accepted regions, which were considerably less 
developed in 1999 and experienced a significant transformation during the 
investigated period, significantly influences the results. 
 



3 Heteroskedasticity and Unobservable Spatial 
Autocorrelation 

 
Conceptually, any omitted variable that is spatially correlated with some of the 
explanatory variables leads to a violation of the assumption of spatial 
independence of errors. DeLong and Summers (1991) point out that any important 
omitted variables that are similar in neighboring countries should generate 
spatially correlated error terms in cross-country growth regressions (i.e., 
contagion effect, regional business cycles, and impact of common currency). It is 
important to address this issue directly because a violation of the spatial 
independence of errors assumption leads to an inconsistent estimation of the 
variance covariance matrix that in turn leads to incorrectly estimated confidence 
intervals of the model coefficients. 
 To illustrate the last point, consider the following examples. First, 
accession of new member states to the EU leads to a more open trade regime for 
the Eastern European regions and more labor market opportunities for Eastern 
European labor migrants. The impact of the accession of new members on the 
economic development of all EU regions, however, is not uniform and varies 
depending on the geographical configuration and relative locations of the regions. 
Second, in the empirical part, I look at the European regions as if they were parts 
of a closed economy that does not interact with other regions located outside of 
the EU, which is a very common approach in the regional studies. However, 
depending on the location of each particular region in the EU, this assumption is 
not always a good approximation of reality. Consider, for example, the impact of 
a shock coming from higher energy prices imported from Russia on economic 
growth in the EU regions. It affects the countries that are closer to Russia and 
depend more on Russian supplies of oil and gas. Therefore, the omitted impact of 
the energy price shock on economic growth is spatially dependent, which clearly 
violates the error independence assumption of a standard spatial model. 
 To formalize the last point, consider a spatial model εβρ ++= XWyy , 
where y is a vector of observations on the dependent variable for all regions in the 
world, X is a matrix of exogenous explanatory variables, W is an exogenous 
matrix of spatial weights, and ε  is a vector of  errors. ),0( 2σiid
 Consider a partition of the spatial matrix that describes the relationship 
between all regions in the world into the submatrix of spatial interactions of the 
European regions with other European regions, , and the submatrix of spatial 
interactions of the European regions with the rest of the world, . I similarly 
split the dependent variable 
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)'', 2'( 1 εεε = . The estimated relationship for the sample of 
European regions is described as: 
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where 12121 ερ += yWu . Clearly, the omitted spatial interactions produce errors 
that are heteroskedastic and spatially correlated. 
 Although in the two examples presented in this section I can deal with 
particular types of omitted variables by directly including them in the estimated 
equation, the list of possible omitted effects is not exhausted by the mentioned 
examples and can be continued. Therefore, estimation of the model using the 
robust method suggested in the paper offers a more tractable solution. 
 
4 Production and Spatial Spillovers 
 
Following Mankiw et al. (1992), let the production function of a region i at time t 
be: 
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where Y is output, K is the stock of physical capital, H is the stock of human 
capital, A is the level of technology, L is labor, and B is the total factor 
productivity. Labor and technology grow exogenously: 
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  depends on the spatial location of the region and is the primary interest 
of this paper. I postulate that the total factor productivity of the region i

itB
 positively 

depends on the GDP per capita of the neighboring regions through spillovers in 
the market potential and supplier access. The international trade theory provides 
ample support for this claim in at least two important ways. First, stylized facts 
show that exporting and multinational enterprises (MNE) are more productive 
then domestic firms (e.g., Bernard and Jensen, 1999). Moreover, Helpman et al. 
(2004) developed a theoretical model that, among other things, predicts that 
multinational firms are the most productive. At the same time, the literature on 
MNEs locations stresses the importance of the market potential as one of the 
major reasons for investing in a particular region (e.g., Head and Mayer, 2004). 
Therefore, other things being equal, the fact that regions with more developed 
neighbors attract more productive firms increases the average productivity of the 
region. Second, regions that have more developed neighbors enjoy a wider choice 



of intermediate goods suppliers that can be used as inputs in the production 
process. This, in turn, lowers production costs and increases the productivity of 
firms located in the region (Amiti and Javorcik, 2008). 
 In the next section, the spatial spillovers are introduced in the framework 
of the Solow growth model. 
 
4.1 Convergence 
 
The Solow model predicts that income per capita of region i converges to the 
steady-state value for the region and the rate of convergence is proportionate to 
the deviation of the current level of GDP per capita from the steady-state level. 
Approximating around the steady state, the rate of convergence is: 
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where  is GDP per capita in region i at time t,  is the steady-state GDP per 
capita, and 
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 Plugging the expression for the steady-state level of GDP per capita, 
equation (2) can be transformed as follows: 
 

143211 ln)ln(lnlnlnlnln −− −++−++=− itit
h
it

k
itititit ygnssByy γδγγγ  (3) 

 
where  is GDP per capita in region i at time t,  and  are investments in 
physical and human capital to GDP ratios,  is the population growth, 
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itn g  is an 
exogenous technological improvement, and δ  is the capital depreciation rate, 
which is assumed to be equal for physical and human capital. 
 
4.2 Parameterization of  itBln
 
To model the regional interdependence, equation (3) is augmented by including a 
weighted average of the growth rates in GDP per capita of the neighboring 
regions, , which is called the spatial lag of the dependent 

variable in the spatial econometrics literature (e.g., Anselin, 1988). It captures the 
global spatial spillovers without explicitly specifying the channels through which 

∑
≠

−−
ijj

jtjtij yyw
,

1)ln(ln



such spillovers spread from one region to another. I assume the following 
functional form for the log of total factor productivity: 
 

it
ijj

jtjtijit uyywB +−= ∑
≠

−
,

1)ln(lnln ρ  

 
 The choice of appropriate weights poses a serious problem because they 
should be exogenous, known ex ante, and cannot be estimated within the model.1 
For the baseline model specification, I select weights that are inversely related to 
distance between regions i and j and normalized by each row to add up to one: 
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 Under the assumption of no spatial interdependence, the coefficient ρ  of 
the spatial lag is equal to zero and can be tested using the standard Wald test.  
is the error term, which is allowed to be heteroskedastic and spatially correlated 
across regions. I elaborate on the structure of the error term and estimation of the 
variance-covariance structure in the next section. 

itu

 
5 Estimation 
 
5.1 2SLS and HAC Robust Standard Errors 
 
Using expression 1

,
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or using the matrix notation: 
 

                                                 
1 Estimation of weights within the model tends to bias the resulting estimated matrix 

towards a matrix with equal off-diagonal elements. 
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tu

 is the vector of 
observations of the dependent variable at time t,  is the matrix of explanatory 
variables at time t,  is the vector of errors, and W is the NxN weighting matrix. 
 u is generated according to the following process: 
 

tt Ru ε=  (6) 
 
where tε  is an Nx1 vector of innovations and R is an NxN nonstochastic matrix 
whose elements are not known. iε  is i.i.d. (0,1) with  for some  
and 0 . 
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 The spatial lag of the regional growth rates, WY, is an endogenous variable 
and cannot be estimated by simple OLS regression (Kelejian and Prucha, 1999). 
However, the model equation (5) can be estimated by the instrumental variable 
technique that uses spatial lags of exogenous variables as instruments. The spatial 
2SLS estimator has the following form:2 
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2 See the Appendix for a detailed discussion of the selection of instruments and the 2SLS 

estimation procedure. 



5.2 Choice of the Bandwidth and Kernel Function 
 
I consider three kernel functions, K(x), that satisfy the criteria mentioned in the 
previous section. The Bartlett and Parzen kernels for HAC estimation proposed by 
Newey and West (1987) and Gallant (1987, p. 533) consequently satisfy the 
assumptions required for the kernel K(x) and generate a positive semidefinite 
estimator of . In addition, I report results for the Tukey-Hanning kernel, which 
is frequently used in the literature (Andrews, 1991) and produces a positive 
semidefinite estimation of . In the application that I consider, different kernel 
functions produce similar estimates of 

Ψ̂

Ψ̂
Ψ̂ , which is consistent with the findings 

from the nonparametric literature (Mittelhammer et al., 2000). 
 The choice of the bandwidth, on the other hand, is more important for 
consistency because the estimation of the elements of Ψ̂  is quite sensitive to the 
choice of the bandwidth. Kelejian and Prucha (2007) recommend computing the 
bandwidth parameter based on the following condition: 
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where ,  is the number of regions for which the 
distance between region i and all other regions is less than or equal to , and 
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2/1≤τ . 

 Lambert et al., (2008), on the other hand, found that in applied work it is 
advisable to consider higher values of τ  as well to get a more conservative 
estimation of the variance-covariance matrix. In particular, they found that 

3/2=τ  or, in some circumstances, 4/3=τ  are plausible values in their 
estimated sample. In the empirical part, I present the results for several values of 
τ  to study the sensitivity of the estimation to the choice of the bandwidth 
parameter . nl
 
6 First Look at the Data 
 
The main data source is the Regional Statistics published by Eurostat. 
Specifically, I use nominal regional gross domestic product for 1999–2005 at 
NUTS 2 level and population data for the same period to calculate nominal 
regional GDP per capita.3 The gross-fixed-capital formation in current Euros and 

                                                 
3 I can go back in time as far as 1995, but at the cost of losing 20 percent of our sample. 



the number of tertiary education employees4 in the region are used to construct 
proxies for . hs and ks
 I construct a cross section of 201 regions for which the data on all relevant 
variables are available. Initial conditions are captured by the log of GDP per 
capita in 1999. I take the period average of investment to GDP ratio and the 
period average share of employees with a tertiary level of education in the total 
employment population to measure  consequently. Finally, I calculate a 
period average population growth at the regional level and assume that the rate of 
growth of the sum of technological growth, g

hs and ks

, and depreciation, δ , is equal to 
0.05 as is conventionally accepted in the literature on convergence. 
 
Table 1 Summary statistics

Variable       Obs Mean Std. Dev. Min Max

Regional growth rate, 1999-2005 201 0.298 0.205 0.014 1.088
Spatial lag of growth rate 201 0.288 0.062 0.209 0.516
Average population growth ratea 201 0.003 0.006 -0.010 0.030
Average I/GDPa 201 0.217 0.047 0.144 0.437
Average share of skilled workers in total 
employmenta 201 0.092 0.040 0.028 0.196
Initial GDP per capita in mln. of Euro 201 0.016 0.009 0.001 0.047
a) Average over period 1999-2005  
 
 

                                                

Table 1 reports the summary statistics. Over the investigated period, the 
Bucuresti-Ilfov region (RO32 according to the NUTS 2 classification) 
experienced the highest growth of GDP per capita, which more then doubled 
between 1999 and 2005. In fact, all Romanian regions demonstrated very high 
growth rates during the investigated period, which can mainly be explained by 
very low initial values of GDP per capita and expected EU accession. Other 
Eastern European regions located in the Czech Republic, Hungary, Estonia, 
Latvia, Lithuania, and Slovakia were also among the top performers and 
experienced growth of more then 70 percent. The slowest growing regions, on the 
other hand, were three German regions (Berlin DE30, Lunenburg DE 93, and 
Köln DEA2), which grew by less then 5 percent during the same period. 
 Romanian regions that experienced the highest growth rates over the 
period 1999–2005 were also the poorest among all EU regions in 1999. Five out 
of the ten richest regions in 1999 were located in Germany, which grew at the 
slowest rate among all countries in the sample. Those observations point to an 
unconditional convergence, which is clearly illustrated by Figure 1. One 

 
4 Employees with education level 5 or 6 according to the International Standard 

Classification of Education 1997 (ISCED). 



additional observation that can be inferred from Figure 1 is the possibility of 
convergence clubs with two distinct groups of countries: old EU members and 
new EU members. 
 Finally, it is not surprising that the fastest growing regions of the EU also 
have faster than average growing neighbors—the Romanian, Hungarian, and 
Slovak regions have the value of the spatial lag of GDP per capita growth higher 
then 40 percent. Figure 2 plots the graph of the spatial GDP per capita growth in 
1999–2005 on GDP per capita growth over the same period, which gives a 
preliminary estimation of the unconditional, positive spatial dependence. 
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6.1 Main Results and Discussion of Spatial Convergence 
 
Table 2 reports the baseline results and compares them with a Mankiw et al. 
(1992) type of regression presented in column (1). Column (2a) presents results of 
a standard spatial model with homoskedastic errors, while column (2b) presents 
HAC robust standard errors. Both models (1) and (2) look at the growth rate in 
GDP per capita in 1999–2005 for 201 regions for which we have data. The results 
confirm the initial hypothesis of convergence of the European regions that is 
indicated by the negative sign of ln GDP per capita in 1999. The spatial lag of 
growth of GDP per capita in model (2) is positive and significant at the 1 percent 
level. It is also economically large—an exogenous increase of growth in GDP per 
capita in the neighboring regions by 1 percent directly leads to a 0.6 percent 
increase in the GDP per capita in the observed region. Importantly, inclusion of 
the spatial lag of GDP per capita reduces in absolute value the coefficient 
associated with the convergence rate from 0.255 to 0.212. Clearly, regression (1) 
is misspecified due to an omitted variable problem, and part of the convergence 
process comes from the spatial spillovers: a relatively poor region with a higher 
than average growth rate tends to be located close to other relatively poor regions 
with high growth rates. Other things being equal, when neighboring regions grow 
faster, it has a positive impact on the growth rates within the region itself. 
 For HAC estimation of the variance-covariance matrix presented in 
column (2b), I have chosen the Bartlett kernel function: 



 

 
otherwise  0

)( if
)(

1),(
*

**







>−= nij
n

ij

ij
ldd

ld
d

ddK  

 
and the bandwidth parameter 34=nl .5 Correction for heteroskedaticity and spatial 
correlation of the error term presented in the third column of Table 2 is important 
because it substantially changes the estimates of the standard errors. For example, 
for the coefficient of the spatial lag of GDP per capita, it increases the standard 
error by 27 percent. 
 There are several 

                                                

other interesting findings that are worth mentioning. 
Unexpectedly, I found a positive impact of population growth on growth in GDP 
per capita. A closer look at population growth data revealed that Illes Baleares, 
Spain, was the fastest growing region with population growth at 3 percent per 
year on average. The second fastest growing region was Flevoland, Netherlands, 
with a population growth of 2.98 percent per year. Regions that grew faster than 2 
percent per year included three other Spanish regions: Comunidad de Madrid, 
Comunidad Valenciana, and Region de Murcia. 
 

 
5 This value of the bandwidth parameter corresponds to 3/2=τ  and gives a more 

conservative estimation of the standard errors than discussed by Kelejian and Prucha (2007). 



Table 2 Main Results  

Growth in GDP per capita in 1999-2005 (1) OLS (3) FE
IV IV HAC

Ln (gdppc) in 1999 -0.255*** -0.212*** -.212*** -0.215***
(0.011) (0.019) (0.022) (0.025)

Population growth 0.214** 0.220** .220** 0.01
(0.073) (0.070) (.082) (0.029)

S capital 0.027 0.011 .011 0.01
(0.037) (0.036) (.057) (0.017)

S human capital 0.111*** 0.106*** .106*** 0.038**
(0.017) (0.017) (.021) (0.015)

Spatial lag of growth in GDP per capita 0.638** 0.638* 0.471**
(0.234) (0.298) (0.146)

Constant 0.136 0.117 .117 -0.750***
(0.192) (0.185) (.193) (0.125)

adjusted R2 0.768 0.786 0.786
R2 between 0.436
R2 within 0.325
N 201 201 201 885
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

(2) IV 

 
 
 In addition, several regions of Ireland and Portugal experienced fast 
population growth. On the other hand, the three regions that experienced the 
fastest population decline were Sachsen-Anhalt, Chemnitz, and Thuringen from 
the former East Germany. Some regions of Latvia, Lithuania, Poland, and 
Romania also experienced a decline. These observations allow us to draw the 
following conclusion: the change in population can be associated with substantial 
migration flows from relatively poor and depressed regions of new EU members 
to those booming regions of old Europe that have more liberal migration laws. 
 The investment-to-GDP ration did not play an important role in GDP per 
capita growth during 1999–2005. Human capital, on the other hand, had a 
substantial positive contribution to economic growth. Regions that had a higher 
share of employees with a tertiary level of education tended to grow faster, which 
is consistent with the theory of a positive link between human capital 
accumulation and economic growth. 
 Unobserved regional heterogeneity in terms of climate, institutions, and 
state of technology can substantially bias my results. The above-mentioned 
factors are spatially correlated and can create an omitted variable bias that would 
invalidate the results. In order to check for this possibility, Table 2 also presents 
the results of the regression with regional fixed effects that capture region-specific 
factors, which either do not change over time (climate and absolute geographical 
location) or change relatively slowly (e.g., institutions). As can be seen from the 



last column of Table 2, the fixed effect regression gives a smaller, yet not 
statistically different, coefficient of the spatial lag of GDP per capita growth. 
However, it is important to notice that the fixed effect model, equation (3), looks 
at year-to-year changes in GDP per capita within a region, while the model 
equation (2) looks at convergence over a longer time horizon across regions, so 
the comparison across the models should be viewed with caution. 
 
6.2 Convergence in Wage per Employee 
 
In the previous section, I developed a model of convergence based on the Solow 
growth model. However, there are alternative theories that explain the 
geographical distribution of economic activities and can be directly linked to the 
model of economic growth. For example, the new economic geography literature 
(e.g., Krugman, 1991 ) links the endogenous location of firms and workers in an 
economy that has increasing returns at the firm’s level and considerable trade 
costs. One of the predictions of this literature is proximity-concentration trade-off 
that leads to the development of core regions, which drive economic growth, 
create new technology, and attract the most productive workers, and periphery 
regions, which produce in traditional sectors such as agricultural products and 
natural resources. The core regions have higher productivity per worker and 
higher wages than the periphery regions. Because GDP per capita is not perfectly 
correlated with productivity per worker, I test the predictions of the new 
economic geography literature using wage per employee as the dependent 
variable and present the results in Table 3. It shows that there is a convergence in 
wage per worker, but at considerably slower rates. The spatial spillovers, on the 
other hand, are much stronger. In addition, the importance of physical capital 
accumulation on economic growth is more pronounced, while human capital has 
no significant impact on the growth in wage per worker. 
 



Table 3 Wage per Employee  

Growth in wage per worker in 1998-2004 (1) OLS (3) FE
IV IV HAC

Ln (gdppc) in 1999 -0.155*** -0.098*** -0.098*** -0.071***
(0.012) (0.013) (0.023) (0.019)

Population growth 0.209** 0.189*** 0.189* -0.014
(0.070) (0.054) (0.081) (0.029)

S capital 0.196*** 0.131*** 0.131** -0.026
(0.040) (0.033) (0.043) (0.015)

S human capital 0.030 0.028* 0.028 0.011
(0.016) (0.013) (0.017) (0.007)

Spatial lag of Ln (gdppc) 1.250*** 1.250*** 1.293***
(0.203) (0.356) (0.169)

Constant 1.656*** 1.051*** 1.051*** 0.139
(0.214) (0.194) (0.298) (0.103)

adjusted R2 0.671 0.800 0.800
R2 between 0.454
R2 within 0.343
N 172 172 172 873
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

(2) IV 

 
 
6.3 Robustness Checks 
 
First, I present how changes of the kernel function K(x) and bandwidth parameter 

 impact our estimation of the standard errors of the coefficients in Table 4. It 
shows the standard errors of the estimated coefficients in the model for several 
values of the bandwidth , which correspond to different values of 

nl

nl τ  and . 
The fourth column of results is equivalent to the baseline model specification 
from Table 2. As a general rule, standard errors tend to increase with higher 
values of bandwidth, but are quite similar for different kernel functions. The 
Parzen kernel produces somewhat smaller standard errors, especially for higher 
values of the bandwidth parameters relative to results with Bartlett and Tukey-
Hanning kernels. Importantly, the results presented in Table 2 do not change the 
significance at the 5 percent level, which indicates the robustness of the main 
results. 

*d

 



Table 4 HAC Robust Standard Errors 
 (for different kernels and different levels of the bandwidth parameter)  
τ 0.125 0.25 0.33 0.67 0.75

Bandwidth l n 2 6 14 34 53

Distance, d*(l n ), kilometers 17 53 95 186 297

Bartlett kernel
Spatial lag of growth rate 0.252 0.256 0.262 0.299 0.313
Log of GDP per capita in 1999 0.018 0.018 0.018 0.022 0.025
Population growth 0.070 0.070 0.071 0.082 0.093
S capitla 0.045 0.045 0.046 0.057 0.071
S human capital 0.017 0.017 0.017 0.020 0.025

Parzen kernel
Spatial lag of growth rate 0.252 0.255 0.258 0.274 0.305
Log of GDP per capita in 1999 0.018 0.018 0.018 0.019 0.023
Population growth 0.070 0.070 0.071 0.076 0.085
S capitla 0.045 0.045 0.045 0.050 0.061
S human capital 0.017 0.017 0.017 0.018 0.021

Tuckey-Hanning kernel
Spatial lag of growth rate 0.252 0.257 0.261 0.292 0.323
Log of GDP per capita in 1999 0.018 0.018 0.018 0.021 0.025
Population growth 0.070 0.070 0.071 0.081 0.092
S capitla 0.045 0.045 0.045 0.056 0.069
S human capital 0.017 0.017 0.017 0.020 0.024  
 
 Second, I present how results change under different weighting matrix 
specifications. I consider a sequence of cutoff points  formulated as follows: maxd
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 The results presented in Table 5 are quite sensitive to the choice of the 
weighting matrix and show a nonlinear U-shaped relationship between the spatial 



lag of growth of GDP per capita and the cutoff distance. The HAC standard errors 
are calculated using the Bartlett kernel and the bandwidth parameter , 
which gives the upper bound estimation of the standard errors. 

34=nl

 
Table 5 Alternative Specifications of the Weighting Matrix  
Growth in GDP per capita in 1999-2005

223 340 608 1024 2072 2762

Ln (gdppc) in 1999 -0.144*** -0.135*** -0.215*** -0.223*** -0.217*** -0.212***
(0.039) a (0.040) (0.028) (0.021) (0.022) (0.022)

Population growth 0.13 0.13 0.199** 0.226** 0.221** 0.220**
(0.083) (0.081) (0.082) (0.083) (0.083) (0.082)

S capital 0.04 0.04 0.02 0.01 0.02 0.01
(0.047) (0.050) (0.059) (0.058) (0.058) (0.057)

S human capital 0.076*** 0.073*** 0.102*** 0.106*** 0.106*** 0.106***
(0.021) (0.021) (0.021) (0.021) (0.020) (0.020)

Spatial lag of Ln (gdppc) 0.501** 0.567*** 0.267 0.334* 0.565* 0.637**
(0.162) (0.176) (0.174) (0.185) (0.299) (0.298)

Constant 0.15 0.16 0.16 0.18 0.13 0.12
(0.160) (0.155) (0.184) (0.196) (0.197) (0.193)

adjusted R2 0.831 0.826 0.778 0.776 0.783 0.785
N 201 201 201 201 201 201
HAC robust errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

Cut-off point dmax,kilometers

 
 
 A U-shaped form of the coefficient of the spatial lag of growth rate as a 
function of cutoff points is additionally illustrated by Figure 3 for more values of 

. The results stabilize if we consider a cutoff point of 1,024 kilometers (636 
miles) or higher. A possible explanation of such behavior may be an example of 
two forces working in opposite directions. On the one hand, very proximate 
regions located within 300 kilometers (186 miles) form an agglomeration with a 
center of economic life concentrated in a core city of a region that attracts human 
resources and firms and therefore reduces the attractiveness of other locations 
within the same agglomeration. On the other hand, big cities located farther from 
each other interact and benefit from trade and other forms of economic activities 
that strengthen positive spillovers over relatively remote trading partners. 

maxd

 



Figure 3 Coefficient of Global Spatial Spillovers 
(as a function of the cutoff distance, ) maxd
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7 Conclusions 
 
This paper applies a nonparametric heteroskedasticity and autocorrelation 
consistent (HAC) estimator of error terms in the context of the spatial 
autoregressive model of GDP per capita convergence of European regions at 
NUTS 2 level. By introducing the spatial dimension, it looks at how the 
equilibrium distribution of GDP per capita of EU regions evolves both in time and 
space dimensions. Results demonstrate that the global spatial spillovers of growth 
rates make an important contribution to the process of convergence by reinforcing 
the economic growth of neighboring regions. Poor regions that tend to locate 
closer to each other experience faster growth rates, which is consistent with the 
predictions of the Solow model. However, part of the faster economic growth 
comes not from local factors within the regions, but rather from the spatially 
reinforcing growth of neighboring regions. Results are even more pronounced 
when the convergence in wage per worker is considered. 
 Results demonstrate that correction for spatial heteroskedasticity and 
correlation is important because it takes into account unobserved spatial links and 



leads to significantly different estimation of the variance-covariance matrix. The 
choice of kernel functions does not significantly affect estimation of the variance-
covariance matrix, while the choice of the bandwidth parameter is quite 
important. Finally, results are sensitive to the weighting matrix specification, and 
further research is needed to give a more rigorous justification for the selection of 
the weighting matrix. 
 
Appendix 
 
Spatial 2SLS estimator 
 
From equation (5) and under the assumption that | 1|<ρ , it can be shown that: 
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In addition, 
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 Given the result (A1), optimal instruments for Z=[X,WY] are 

. Consider the following subset of instruments, 
. Let 

)](,[ WyEXEZ =

,,[ 2 XWWXXH = ] 1ˆ ,  where ( ' ) 'Z PZ P H H H H−= = . The spatial 2SLS 
estimator has the following form: 
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